Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event
نویسندگان
چکیده
Carbonate cave deposits in India and China are assumed to record the intensity of monsoon precipitation, because the δ18O of the carbonate tracks the isotopic signature of precipitation. These records show spatially coherent variability throughout the last ice age and suggest that monsoon strength was altered during the millennial-scale climate variations known as Dansgaard–Oeschger events and during the Heinrich cooling events. Here we use a numerical climate model with an embedded oxygen-isotope model to assess what caused the shifts in the oxygen-isotope signature of precipitation during a climate perturbation designed to mimic a Heinrich event. Our simulations show that a sudden increase in North Atlantic sea-ice extent during the last glacial period leads to cooling in the Northern Hemisphere, reduced precipitation over the Indian basin and weakening of the Indian monsoon. The precipitation is isotopically heavier over India and the water vapour exported to China is isotopically enriched. Our model broadly reproduces the enrichment of δ18O over Northern India and East Asia evident in speleothem records during Heinrich events. We therefore conclude that changes in the δ18O of cave carbonates associated with Heinrich events reflect changes in the intensity of Indian rather than East Asian monsoon precipitation.
منابع مشابه
Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling
The Indian monsoon, the largest monsoon system on Earth, responds to remote climatic forcings, including temperature changes in the North Atlantic1,2. The monsoon was weak during two cool periods that punctuated the last deglaciation— HeinrichStadial 1 and theYoungerDryas. It hasbeensuggested that sea surface cooling in the IndianOceanwas the critical link between these North Atlantic stadials ...
متن کاملHolocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman.
A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation for the periods from 10.3 to 2.7 and 1.4 to 0.4 thousand years before the present (ky B.P.). Between 10.3 and 8 ky B.P., decadal to centennial variations in monsoon precipitation are in phase with temperature fluctuations recorded in Green...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملIncreased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification
Chemical weathering and the ensuing atmospheric carbon dioxide consumption has long been considered to work on geological time periods until recently when some modelling and natural records have shown that the weathering-related CO2 consumption can change at century to glacial-interglacial time scale. Last glacial to interglacial transition period is a best test case to understand the interplay...
متن کاملLate Glacial to Holocene Indian Summer Monsoon Variability Based upon Sediment Records Taken from the Bay of Bengal
Paleoclimatic records from the Bay of Bengal are rare. We reconstruct the sea-surface temperature (SST) and salinity from paired δ18O and Mg/Ca measurements in planktonic foraminifera Globigerinoides ruber from the western Bay of Bengal core VM29-19. Our data suggest that SST and seawater δ18O (δOsw) were ~3°C colder and ~0.6‰ depleted, respectively, during the Last Glacial Maximum (LGM) compar...
متن کامل